

Effect of NaCl Stress on Growth, Water Relations, Organic and Inorganic Osmolytes Accumulation in Sunflower (*Helianthus annuus* L.) Lines

Ahmad Heidari¹, Mahmoud Toorchi^{1*}, Ali Bandehagh¹ and Mohammad-Reza Shakiba²

¹ Department of Plant breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 51664, Iran ² Department of Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz 51664, Iran

^{*}Corresponding author: mtoorchi@yahoo.com

Abstract:

Salinity is one of the important abiotic stresses that affect growth, physiology, biochemistry and molecules of plants. In this study, response of 12 sunflower (H. annuus) lines to NaCl salinity (0, 100 and 200 mM NaCl) was investigated in hydroponic culture system. Plant growth parameters, height, third leaf water status, relative membrane permeability (RMP), organic and inorganic osmolytes were measured 30 days after salinity induced. Among the lines, R₂, R₅₆ and R₅₀ showed significantly smaller reduction in growth parameters compared with B₁₁, B₃₅₃, B₂₅ and B₁₅ indicating that the former lines were more salt tolerant than the others. The line R₂showed less reduction in height and this result revealed that high correlation between height and growth parameters. Relative water content (RWC) was decreased under salinity stress and the lines not differed significantly in this water relation attribute. Leaf water potential (LWP) was increased under salinity but the lines showed contrary relation with growth parameters. Appears that LWP not efficient method to measured water status under greenhouse conditions. RMP in tolerant lines was lowest compared with other lines. Also, glycine betaine (GB) was enhanced under salinity stress but non-significant differences were observed among the lines for this compatibility solute. It seems GB had less important role in sunflower due to it was lowest osmolyte that accumulated under salinity condition. In tolerant lines proline was more accumulated compared with sensitive lines and it was 1.94 times further. The relationship between Na and K cations indicate that at least in sunflower, accumulation of K^{\dagger} dependent to Na^{\dagger} influx. In other words, the lines that accumulate high Na^{\dagger} was have more K^{+} content and vice versa. Also, in this study, the K^{+} content was increased under salinity but the K^{+}/Na^{+} was decreased.

Key words: Glycine betaine, Helianthus annuus, LWP, NaCl, proline, RMP, RWC, salt stress, sunflower, water status.

1.0 Introduction:

Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinisation of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050 (Wang et al., 2003). The deleterious effects of salinity on plant growth are associated with (1) low osmotic potential of soil solution (water stress), (2) nutritional imbalance, (3) specific ion effect (salt stress), or (4) a combination of these factors (Ashraf, 1994b; Marschner, 1995; Zhu, 2003; Turan et al., 2010). Salinity is known to adversely affect production of most crops worldwide (Hasegawa et al. 2000; Bayuelo-Jime'nez et al. 2002; Ashraf 2009).

Soluble salts at higher concentrations in growth medium cause hyperosmolality and imbalance of nutrients in most plants that harmfully decline plant growth (Zhu, 2003; Turan et al., 2010). Many studies have shown that the height (jamil et al., 2007; Rui et al., 2009; Memon et al., 2010), growth index (Bandehhagh et al., 2008) and fresh and dry weights of the shoot and root system (Abdul Jaleel et al., 2007; Ashraf and Ali, 2008; Shahbaz et al., 2010) are affected negatively by changes in salinity concentration, type of salt present, or type of plant species. Numerous studies showed the affection of leaf area negatively by using different concentrations ofNaCl (Zhao et al., 2007; Yilmaz and Kina, 2008; Rui et al., 2009).

Under saline conditions, high accumulation of toxic ions such as Na and Cl takes place in the chloroplast (Jain et al., 2001; Alvarez et al., 2003; Munns, 2005; Munns et al., 2006) and number of studies with different horticultural crops have shown that K^{+} uptake is perturbed by salinity thereby resulting in reduced K⁺/Na⁺ ratio (Graifenberg *et al.*, 1995; Perez-Alfocea et al., 1996). K^+ is very important to the cytosol ionic homeostasis maintenance in Na⁺stressed plants (Zhu, 2003). The K^{+} ion plays a central role in OA, turgor maintenance, and in the stomata opening control of plants under physiological or stress conditions (Maathuis and Amtmann, 1999). However, high K^{\dagger}/Na^{\dagger} ratio in plants under saline conditions has been suggested as an important selection criterion for salt tolerance (Ashraf, 1994b, 2002, 2004; Qian et al., 2001; Reynolds et al., 2005).

One of the most common stress responses in plants is overproduction of different types of compatible organic solutes such as proline and GB (Serraj and Sinclair, 2002). The organic solutes have been proven to be helpful in osmoregulation (Rodes and Hanson, 1993), enzyme activity (Mansour, 2000), detoxification of reactive oxygen species (Ashraf, 1994a) and protection of membrane integrity (Bohnert and Jensen, 1996). Of the quaternary ammonium compounds in plants subjected to salt stress, GB occurs most abundantly (Mansour, 2000). This organic compound is mainly localized in chloroplasts and plays a vital role in chloroplast adjustment and protection of thylakoid membranes, thereby maintaining photosynthetic efficiency (Robinson and Jones, 1986; Boucaud, 1991). Murata et al. (1992) reported that GB protects the photosystem II (PSII) complex by stabilizing the association of the extrinsic PSII complex proteins under salt stress. Proline, occurs widely in higher plants, accumulates in larger amounts than other amino acids in salt stressed plants (Ashraf, 1994b; Abraham, 2003).Proline regulates the accumulation of useable N, is osmotically very active (Ashraf, 1994a), contributes to membrane stability (Gadallah, 1999) and mitigates the effect of NaCl on cell membrane disruption (Mansour, 1998).

The aim of this study was to elucidate some key biochemical and physiological parameters in 12 sunflower lines, which may provide an insight into the mechanism of salt tolerance in sunflower under varying levels of NaCl stress.

2.0 Material and methods:

2.1 Plant Materials and Growth Conditions:

The experiment was conducted in hydroponic culture system (Fig. 1) under greenhouse conditions at Faculty of Agriculture, University of Tabriz. The experimental design consisted of 36 treatments replicated three times in a split plot design, with salinity as main factor and line as sub factor. Twelve sunflower lines namely R2, R27, R29, R41, R43, R50, R56, B11, B_{15} , B_{25} , B_{109} and B_{353} were subjected to three NaCl concentrations (0, 100 and 200 mM). Seeds were sterilized with sodium hypochlorite and germinated in petri dishes and seven day old seedling of uniform size were transferred into large sand tanks housed within an environmentally controlled greenhouse (15 h daily light, 600-800 μ mol m⁻² s⁻¹ photosynthetic photon flux density (PPFD), thermo period 25±5 °C day\night, and relative humidity 45\60% day\night). The tanks were sub irrigated and flushed four times daily with a modified Hoagland nutrient solution. NaCl stress was imposed 7 days after the seedlings were transferred.

2.2 Growth Parameter:

Thirty day after imposing salt stress, plants were harvested for growth measurement. After separation of shoots, the roots were carefully removed from the sand and washed with distilled water to remove any additional salt surface contamination and dried on absorbing paper, then, the height, fresh and dry weight was measured. Leaf area was recorded using a leaf area meter (Model LI-3100C, LI-COR Biosciences, USA). Average relative growth rate (RGR), absolute growth rate (AGR), net assimilation rate (NAR), leaf area duration (LAD) and relative leaf growth rate (RLGR) were estimated based on the recorded characters (Chaparzadeh *et al.*, 2003).

2.3 Relative Water Content (RWC):

The third fully expanded youngest leaf from top was taken and four leaf discs (1.0 cm diameter) of each leaf were sampled and immediately weighed fresh weight (FW). Then, they were immersed in distilled water in Petri dishes for 24 h at 4 °C in darkness and the turgid weight (TW) determined. The discs were dried in an oven at 70 °C for 24 h and the dry weight (DW) obtained. Then RWC was calculated as given below (Silveira *et al.*, 2003):

RWC (%) =
$$\frac{(FW-DW)}{(TW-DW)} \times 100$$

Universal Journal of Environmental Research and Technology

2.4 Leaf water potential (LWP):

Leaf water potential was measured once on the third fully expanded youngest leaf from top, 30 days after imposing salt stress at 1:00 and 3:00 p.m. with pressure chamber (Turner, 1981).

2.5 Relative membrane permeability (RMP): RMP of the leaf cells was determined as the extent of ion leakage following Yang et al. (1996). The third fully expanded youngest leaf from each plant was cut into three discs with1.0 cm diameter, and these freshly prepared discs, and these freshly prepared discs were placed into test tubes containing 10.0 ml deionized distilled water. After vortex the samples for 3 s, initial electrical conductivity (EC_0) of each sample was measured. The samples were then incubated at 4° C for 24 h and electrical conductivity (EC₁) measured again. The samples were then autoclaved at 120°C for 15 min and cooled to room temperature and electrical conductivity (EC₂) measured for the third time. The (RMP) was calculated using the following formula:

$$RMP = \frac{(EC1 - EC0)}{(EC2 - EC0)} \times 100$$

2.6 Organic Solutes Determination:

2.6.1 Glycinebetaine: Leaf GB contents were extracted and estimated by the method of Grieve and Grattan (1983). Leaf extracts prepared by vigorous shaking in 2 M H_2SO_4 were cooled and mixed with equal volume of periodide, vortexed and kept at 0-4 °C for 16 h. The mixture was centrifuged at 10000 g at 0 °C for 15 min and the supernatant was poured off. Crystals were dissolved in 1,2-dichloroethane and the absorbance was taken at 365 nm.

2.6.2 Proline: Free proline contents were measured according to the method of Bates *et al.* (1973), 0.2 g of fresh leaf material was homogenized in 5 ml of 3% aqueous sulfosalicyclic acid and the residue was removed by centrifugation. Then,1.0 ml of the extract was mixed with 1.0 ml acid-ninhydrin and 1.0 ml of glacial acetic acid in a test tube. The mixture was placed in a water bath for 1 h at 100 °C. The reaction mixture was extracted with 2.0 ml toluene, cooled to room temperature, and the absorbance was measured at 520 nm with a spectrometer (WPA model S2100).

2.7 Inorganic lons:

Inorganic ions were determined following Ashraf *et al.* (2001). For the determination of Na^+ and K^+

contents, 10–100 mg of well-ground dry material of The third fully expanded youngest leaf from top was digested in 8.0 ml concentrated HNO3 (Merck), and the Na⁺ and K⁺ in the digests were determined with a flame photometer (Jenway PFP7).

2.8 Statistical Analysis:

Data were subjected to analysis of variance based on the statistical model of the used experimental design and mean comparison was done using LSD test.

3.0 Results and Discussion:

3.1 Growth Parameters:

The analysis of variance revealed the significant effects of salinity stress on total dry weight, height, leaf area and all the growth parameters. Significant differences were observed among lines for all the growth parameters. Dry biomass production and leaf area were more affected by 200 mM NaCl compared with 100 mM. Interactions between lines and salinity were non-significant for these treats. RGR, AGR, NAR, LAD and RLGR decreased in the stressed plants in comparison controls (Table 1). Among the lines, R₂, R₅₆ and R₅₀ showed significantly smaller reduction in RGR, AGR, NAR, LAD, RLGR compared with B₁₁, B₃₅₃ and B₁₅, indicating that the former lines were more salt tolerant than the others. The RGR in B_{15} , B_{11} , B_{353} , R_{43} and B₂₅ was inhibited by salinity, whereas in R₂, R₅₀ and R₅₆ only slight inhibition was observed in RGR due to salinity stress (Table 2).

The NaCl salinity reduced growth of the studied lines, and the extent of reduction was difference among the lines. The lines B₁₁, B₃₅₃ and B₁₅ showed higher growth reduction under salinity while this was lower in R₂, R₅₆ and R₅₀. There were differences among lines with respect to growth parameters under salinity stress. RGR, AGR, NAR, LAD and RLGR in salt-tolerant lines were slightly reduced by salinity stress, whereas those of the other lines showed a larger reduction. NAR reduction reflects a decrease in the rate of photosynthesis (Cheeseman, 1988) or an increase in respiration (Schwarz and Gale, 1981). El-Hendawy et al. (2005) reported that under salinity stress; decrease in RGR of wheat was only related to photosynthetic rate, not to leaf area. In contrast, in a report of Chaparzadeh et al. (2003), RGR and dry matter production appear to be more dependent on LAR than on NAR. However, Zhao et al. (2007) reported that the RGR of studied genotypes was related to their photosynthetic rate and leaf area, suggesting that both leaf expansion and photosynthetic rate are the growth limiting factors under salinity conditions. Several studies reported the same trend in growth parameters under salinity in other plant species such as canola (Bandeh-hagh *et al.*, 2008), naked oats (Zhao *et al.*, 2007) and rice (Akita and Cabuslay, 1990).

Height measurements taken 30 days after salt induced showed that plants of all lines in the high-salt level were about 32% shorter than control plants (Table 1).The lines R_2 showed minimum reduction, when compared with control, whereas maximum reduction over control was recorded in B_{109} (Table 2). Height significantly decreased in salt-stressed plants. The inhibitory effect on plant growth was more effective when treated by 200 mM NaCl. It seems that reduction height due to decreasing turgor pressure in cells. El and Saffan (2008) reported that Osmotic effects of salinity might cause a stir in the water relations of plants, reduce turgor potential and decline growth due to stomatal closure and reduced photosynthesis.

3.2 Water Relations:

Leaf water content (RWC) decreased with increased NaCl concentration. However, the lines not differed significantly in this water relation attribute, and comparison among two salt levels (100 and 200 mM NaCl) indicates9 and 13% redaction relative control plants, respectively (Table 3). Relative to plants not exposed to NaCl, the leaf water potential (LWP) increased by 25% under treatment at 100 mM NaCl and subsequently increased by 35% at 200 mM NaCl (Table 3). In salt-stressed plants, LWP was less affected in lines $B_{25},\;B_{11}$ and R_2 while high effect observed in $R_{50},\,B_{15}$ and B_{353} lines Table 4). Analysis of variance revealed significant difference between control and salinity levels for RWC and LWP but among lines significant difference was observed only for LWP. In this study, the lines that have more growth and proline showed high and low LWP and the sensitive lines show not same procedure. It seems that LWP not efficient method to measured water status under greenhouse conditions. According to Mattioni et al. (1997), varieties, which accumulated more proline and free amino acids, recorded lower values of LWP, OP and more RWC percent than varieties, which accumulate lesser proline and free amino acid content. Siddique et al. (2000) reported that the cause of higher RWC in tolerant cultivars is ability to absorb more water from the soil and compensate transpiration was done from plant leaves.

3.3 RMP:

Salt stress significantly increased the relative membrane permeability of all 12 lines under salt stress (Table 3). However, highest RMP was observed in line B₁₀₉. In contrast, line R₂₇, B₁₅, R₅₆, B₁₁ and R₂ was the lowest in membrane permeability under saline conditions. Interactions between lines and salinity was significant for this treat. The line R₂₇ and B₁₀₉ have lower and higher RMP respectively (Table 4). In this study, the lines that had highest growth parameters were had lowest RMP. Unlike drought, salinity stress is an intricate phenomenon which includes osmotic stress, specific ion effect, nutrient deficiency and this two stresses caused product reactive oxygen species (ROS) (Sairam et al., 2002). Cell membrane damage caused by salinity in plants correlated with ROS (Sairam et al., 2005). Plants have enzymes and antioxidant compounds to inhibit the ROS and the cultivars which able to synthesis this compounds are tolerant (Ashraf and Ali, 2008).

3.4 Organic solutes accumulation: significant differences were observed among the salt treatments for proline and GB accumulation in all the lines. Both proline and GB accumulation increased significantly in the leaves of all lines under saline conditions (Table 3). However, the lines differed significantly only in proline. Under saline conditions, highest proline accumulation was found in lines R_2 while B_{25} , B_{11} , B_{109} and B_{353} accumulate minimum proline. Increasing proline in R_2 (accumulate highest proline) was approximately 3.75 and 1.94 folds higher than that the control and B_{25} (accumulate lowest proline), respectively. In contrast to proline, all the lines had equal increase in GB content (Table 4).

The accumulation of nitrogen-containing compatible solutes including proline is known to function in osmotic adjustment, protection of cellular macromolecules from damage by salts, storage of nitrogen and scavenging of free radicals (Chookhampaeng, 2011). Many plants accumulate proline as a non-toxic and protective osmolyte under salinity, including mangrove (Paridaet al, 2002), maize (Cicek and Cakirlar, 2002), sorghum (de Lacerdaet al, 2005) and canola (Bandeh-haghet al, 2008). However, a negative relationship was observed between proline accumulation and salt tolerance in tomato (Bolarin et al., 1995) and soybean (moftah et al., 1987) indicate proline in their leaves compared with the salt sensitive ones. Some authors argued that excessively high levels of proline accumulation may be a response to leaf damage (Bolarin *et al.*, 1995; De Lacerda*et al*, 2005) or may be a symptom of stress (Lutts *et al.*, 1999) when exposed to high NaCl concentration and that a higher level of proline accumulation is associated with salt sensitive plants. Proline accumulation in response to lower salt concentration may contribute positively to salt tolerance, whereas the high concentration in leaf tissues under high salinity treatment may be partly due to leaf damage. In our study, the line R_2 that had high growth and lower Na⁺ content, was accumulate more proline in comparison with other lines.

The data showed that GB production under salinity conditions was increased significantly in comparison with control level. Significant difference was not observed between lines for their GB content. This finding was in agreement with the results reported in maize (Rodes *et al.*, 1989), barley (Grumet and Hanson) and canola (Bandeh-hagh *et al.*, 2008).Also, most investigations attest to positive effects of exogenous application of GB on plant stress tolerance (Iqbal and Ashraf, 2006;Iqbal *et al.*, 2005).

NaCl (Mm)	RGR (mg mg ⁻¹ day ⁻¹)	AGR (g plant ⁻¹ day ⁻¹)	NAR (mg cm ⁻² day ⁻¹)	LAD (m ² day ⁻¹)	RLGR (cm ² cm ⁻² day ⁻¹)	Height (cm)
Control	0.149	0.232	2.707	0.466	0.107	82.861
	±0.002 a	±0.015 a	±0.122 a	±0.034 a	±0.003 a	±2.350 a
100	0.134	0.157	2.370	0.317	0.088	68.527
	±0.002 (89)† b	±0.007 (67) b	±0.091 (87) b	±0.018 (68) b	±0.003 (82) ab	±1.805(82) b
200	0.127	0.118	2.216	0.253	0.082	56.638
	±0.002 (85) b	±0.005 (50) b	±0.083 (81) b	±0.017 (54) b	±0.003 (76) b	±1.832 (68) c
Salt effect	*	**	*	*	*	***

Table 1. The means of growth parameters at increasing NaCl concentrations

*P<0.05; **P<0.01; ***P<0.001. RGR, relative growth rate, AGR, absolute growth rate, NAR, net assimilation rate, LAD, leaf area duration, RLGR, relative leaf growth rate, respectively. † Value of parentheses is the mean reduction (% of control) of growth parameters. Amounts that at least have one similar letter have not significant difference.

Fig.1. Sunflower lines 15 days after treatment with 200 mM NaCl. Plants were grown in sand and irrigated with Hogland's solution.

NaCl (Mm)	Line	RGR (mg mg ⁻¹ day ⁻¹)	Mean reduction	AGR (g plant ⁻¹ day ⁻¹)	Mean reduction	NAR (mg cm ⁻² day ⁻¹)	Mean reduction	LAD (m² day)	Mean reduction	RLGR (cm² cm ⁻² day ⁻¹)	Mean reduction	Height (cm)	Mean reduction
100	R2	0.151	98.6 a	0.143	91.6 ab	1.877	98.1 a	0.390	93.0 ab	0.103	99.0 a	80.33	91.8 a
		±0.004		±0.001		±0.014		±0.014		±0.005		±3.38	
	R27	0.139	90.2 ab	0.153	70.1 bc	2.964	100.5 a	0.225	59.2 de	0.070	69.3 bc	73.00	84.8 ab
		±0.008		±0.043		±0.401		±0.081		±0.011		±1.52	
	R29	0.141	94.6 ab	0.118	73.2 abc	2.009	93.2 a	0.261	72.5 bcd	0.089	89.8 ab	57.33	86.0 ab
		±0.010		±0.033		±0.462		±0.029		±0.005		±1.45	
	R41	0.129	86.0 ab	0.160	61.7 c	2.482	76.0 a	0.336	68.0 cde	0.107	83.5 abc	67.33	79.2 ab
		±0.008		±0.028		±0.141		±0.046		±0.006		±4.97	
	R43	0.143	86.1 ab	0.184	55.7 c	2.520	77.6 a	0.374	62.5 de	0.104	88.8 ab	68.00	80.7 ab
		±0.010		±0.054		±0.235		±0.115		±0.011		±9.07	
	R50	0.139	93.2 ab	0.159	91.9 ab	1.933	93.0 a	0.388	88.3 abc	0.092	85.1 abc	68.33	84.0 ab
		±0.002		±0.010		±0.147		±0.019		±0.003		±5.84	
	R56	0.131	94.2 ab	0.167	96.5 a	2.019	98.2 a	0.397	98.5 a	0.095	99.8 a	76.00	79.1 ab
		±0.006		±0.021		±0.181		±0.031		±0.005		±9.64	
	B11	0.124	81.5 b	0.188	63.9 c	2.257	71.0 a	0.387	62.8 de	0.084	63.1 c	77.00	80.4 ab
		±0.003		±0.028		±0.195		±0.080		±0.009		±4.16	
	B15	0.115	81.5 b	0.119	58.9 c	2.525	74.0 a	0.187	63.1 de	0.065	65.6 bc	59.83	86.7 ab
		±0.008		±0.016		±0.479		±0.006		±0.005		±6.93	
	B25	0.126	89.3 ab	0.129	59.4 c	2.374	93.3 a	0.257	61.1 de	0.089	89.0 ab	72.33	86.4 ab
		±0.002		±0.012		±0.177		±0.040		±0.010		±5.17	
	B109	0.143	99.0 a	0.178	62.4 c	3.018	101.9 a	0.272	55.1 de	0.087	87.8 abc	58.33	72.6 b
		±0.011		±0.010		±0.321		±0.013		±0.009		±1.66	
	B353	0.126	81.2 b	0.186	58.6 c	2.460	89.6 a	0.328	48.8 d	0.070	66.6 bc	64.50	81.9 ab
		±0.003		±0.029		±0.295		±0.094		±0.011		±5.25	
00	R2	0.145	94.7 ab	0.134	85.8 a	1.949	101.8 a	0.366	87.3 a	0.108	103.8 a	69.00	78.8 a
		±0.005		±0.003		±0.154		±0.018		±0.003		±0.57	
	R27	0.139	90.2 abc	0.090	41.2 c	2.619	88.8 ab	0.173	45.5 cd	0.076	75.2 bcde	50.00	57.9 c
		±0.002		±0.010		±0.661		±0.062		±0.007		±1.73	
	R29	0.132	88.5 abcd	0.092	57.8 bc	2.020	93.7 ab	0.189	52.5 cd	0.073	73.7 bcde	48.66	72.9 ab
		±0.007		±0.012		±0.279		±0.012		±0.006		±6.22	
	R41	0.133	88.6 abcd	0.152	58.6 bc	2.614	80.1 ab	0.311	62.9 bc	0.110	85.9 abc	58.00	68.2 abc
		±0.004	· · · · · ·	±0.015		±0.276		±0.020		±0.013		±10.53	
	R43	0.125	75.3 d	0.120	36.3 c	1.975	60.8 b	0.300	50.1 cd	0.097	82.9 abcd	58.00	68.9 abc
		±0.012		±0.044		±0.176		±0.114		±0.013		±7.76	
	R50	0.146	97.9 a	0.141	81.5 ab	1.891	91.0 ab	0.377	85.8 a	0.098	90.7 abc	59.00	72.5 abc
		±0.004		±0.005		±0.260		±0.031		±0.002		±2.64	

Table 2. The means of growth parameters of salt-treated sunflower lines and their mean reduction (% of control) under salt stress

356 Ahmad Heidari et al. Universal Journal of Environmental Research and Technology

R56	0.128	92.0 abc	0.137	79.1 ab	1.960	95.3 ab	0.329	81.6 ab	0.090	94.6 ab	63.00	65.6 abc
	±0.006		±0.015		±0.337		±0.015		±0.003		±6.02	
B11	0.120	78.9 cd	0.136	46.2 c	2.443	76.9 ab	0.247	40.0 d	0.079	59.3 de	62.66	65.5 abc
	±0.006		±0.004		±0.217		±0.035		±0.016		±7.75	
B15	0.106	75.1 d	0.080	39.6 c	2.309	67.7 ab	0.133	44.9 cd	0.059	59.5 de	49.33	71.4 abc
	±0.007		±0.010		±0.302		±0.010		±0.014		±7.83	
B25	0.110	78.0 cd	0.098	45.1 c	2.580	101.4 a	0.142	33.8 d	0.053	53.0 e	54.33	64.9 abc
	±0.004		±0.004		±0.202		±0.015		±0.010		±5.04	
B109	0.116	80.5 bcd	0.114	40.0 c	2.156	72.8 ab	0.220	44.6 cd	0.073	73.7 bcde	51.16	63.6 bc
	±0.007		±0.010		±0.160		±0.022		±0.013		±5.08	
B353	0.123	79.3 cd	0.124	39.1 c	2.072	75.5 ab	0.247	36.8 d	0.070	66.6 cde	56.50	71.8 abc
	±0.008		±0.022		±0.080		±0.053		±0.006		±7.85	

All abbreviations and symbols are same as in table 1

NaCl (Mm)	RWC (%)	LWP (-MPa)	RMP (%)	Proline (µg g⁻¹ FW)	Glycine betaine (µg g⁻¹ DW)	Na (mg g⁻¹ DW)	K (mg g⁻¹DW)	K/Na
Control	77.998	1.425	43.531	87.337	1.781	16.107	33.000	2.090
	±1.318 a	±0.037 a	±2.196 a	±2.311 a	± 0.080 a	±0.359 a	±1.063 a	±0.085 a
100	71.667 ±1.214 (91)† b	1.785 ±0.031 (125) b	56.283 ±1.988 (129) b	147.621 ±11.309 (169) b	2.061 ± 0.101 (115) a	20.260 ±0.781 (125) b	36.930 ±0.855 (111) b	1.897 ±0.072 (90) a
200	68.382 ±1.452 (87) c	1.932 ±0.033 (135) c	70.702 ±2.249 (162) c	195.231 ±14.631 (223) c	2.760 ± 0.133 (154) b	27.272 ±1.509 (169) c	39.452 ±1.165 (119) b	1.585 ±0.085 (75) b
Salt effect	***	**	***	***	**	**	**	**

Table 3. The means of water relations, organic and inorganic solutes at increasing NaCl concentrations

*P<0.05; **P<0.01; ***P<0.001. RWC, relative water content, LWP, leaf water potential, RMP, relative membrane permeability, respectively. + Value of parentheses is the mean change (% of control). Amounts that at least have one similar letter have not significant difference.

Table 4.The means of water relations, organic and inorganic solutes of salt-treated sunflower lines and their mean increasing (% of control) under salt stress
--

NaCl	Line	LWP (-MPa)	Mean increasing	RMP (%)	Mean increasing	Proline (µg g ⁻¹ FW)	Mean increasing	Na (mg g ⁻¹ DW)	Mean increasing	K (mg g ⁻ ¹ DW)	Mean increasing
100	R2	1.512	116.6abc	49.004	128.8ab	199.354	254.0 a	15.740	100.2 a	33.450	112.1 a
(Mm)		±0.035		±2.401		±16.137		±1.092		±2.559	
	R27	1.776	130.5abc	59.236	92.5a	169.322	160.5ab	18.626	106.2 a	35.583	107.1 a
		±0.119		±1.491		±30.489		±1.445		±3.438	
	R29	1.886	125.9abc	56.501	145.0ab	184.070	221.4ab	26.317	148.6ab	41.650	117.7 a
		±0.023		±5.156		±63.064		±2.800		±4.389	
	R41	1.788	123.1abc	57.326	146.8ab	149.244	185.7 ab	18.891	130.9ab	35.616	112.9 a
		±0.009		±2.952		±51.994		±1.312		±3.956	
	R43	1.700	128.0abc	54.223	149.8 b	102.866	136.3ab	17.394	102.0 a	35.200	115.1 a
		±0.051		±7.168		±11.307		±1.020		±4.909	
	R50	1.788	141.4 c	58.564	132.5ab	159.771	164.1ab	18.673	117.1ab	42.483	124.3 a
		±0.135		±6.571		±35.105		±1.292		±2.425	
	R56	1.847	131.3abc	76.955	118.3ab	208.312	206.6ab	18.798	123.8ab	35.983	133.5 a
		±0.068		±1.895		±48.927		±1.831		±1.569	
	B11	1.572	105.4 a	46.061	120.0 ab	97.3416	119.7ab	16.317	115.8ab	37.583	122.8 a
		±0.193		±6.873		±8.8058		±1.852		±2.353	
	B15	1.870	137.5bc	50.153	109.0 ab	202.395	224.6ab	21.325	133.1ab	34.950	101.8 a
		±0.147		±3.191		±58.502		±2.134		±0.986	
	B25	1.898	110.7ab	48.073	123.8ab	88.0238	106.1 b	19.983	125.2ab	37.266	96.1a
		±0.016		±4.301		±5.8608		±2.674		±1.443	
	B109	1.912	117.8abc	63.722	200.0 c	92.2168	114.1 b	29.234	174.3 b	41.166	113.9 a
		±0.060		±1.556		±5.2761		±2.431		±0.643	
	B353	1.875	142.6 c	55.576	132.8ab	118.539	128.8ab	21.824	129.0ab	32.233	93.1 a
		±0.117		±2.861		±4.3142		±1.099		±0.674	
200	R2	1.608	124.0ab	56.863	149.4abc	294.363	375.1 a	16.444	104.7 a	34.866	116.8ab
(Mm)		±0.051		±1.983		±4.4408		±1.150		±3.578	
	R27	1.884	138.5ab	75.904	118.5 a	261.801	248.1abc	19.874	113.3ab	34.983	105.3ab
		±0.053		±1.668		±72.135		±0.735		±4.564	
	R29	2.050	136.8ab	68.535	175.9bcd	226.094	271.9abc	34.725	196.1 cd	40.950	115.7ab
		±0.056		±1.835		±49.971		±5.042		±1.029	
	R41	1.930	132.9ab	67.773	173.5abcd	193.592	240.9abc	23.914	165.7abcd	39.816	126.2ab
		±0.145		±3.533		±54.866		±4.467		±3.923	
	R43	1.852	139.4ab	54.138	149.6abc	126.892	168.1bc	26.208	153.7abcd	42.516	139.0 a
		±0.145		±2.103		±20.101		±4.050		±4.444	
	R50	1.930	152.6 b	84.265	190.7 cd	185.306	190.3bc	23.244	145.7abc	46.366	135.7 a
		±0.123		±4.867		±38.045		±1.220		±0.917	
	R56	1.801	128.0ab	84.799	130.3ab	282.473	280.2ab	30.373	200.1 cd	43.500	161.4 a
		±0.060		±2.709		±49.274		±6.592		±1.125	
	B11	1.893	126.9ab	52.425	136.5abc	116.443	143.2 c	22.666	160.9abcd	35.750	116.8ab
		±0.128		±8.473		±10.554		±2.857		±1.365	
	B15	1.967	144.6ab	59.948	130.2ab	249.877	277.3abc	34.444	214.9 d	42.600	124.0ab
		±0.045		±1.380		±69.188		±5.729		±3.744	
	B25	2.077	121.1 a	87.066	224.2 de	123.664	149.1bc	31.200	195.5 cd	25.716	66.3b
	B / 6 /	±0.045		±3.536		±3.2024	150.01	±9.673		±2.708	
	B109	2.192	135.1ab	81.138	254.6 e	129.022	159.6bc	34.335	204.7 cd	44.483	122.9 ab
	Dore	±0.096	450.51	±3.476		±28.966	100.0	±4.392	170 4	±1.369	
	B353	2.004	152.5 b	75.567	180.6bcd	153.248	166.6bc	29.842	176.4bcd	41.883	121.0ab
		±0.125		±6.041		±13.113		±3.310		±2.951	

All abbreviations and symbols are the same in table 3

3.5 Ionic Relations:

The presence of NaCl in the rooting medium induced an important increase in Na⁺ concentration in the leaves of plants (Table 3). Lines R₁₀₉, R₂₉ and R₁₅had considerably higher leaf Na⁺ concentration than the other lines, especially R₂andR₂₇ (Table 4). Opposite to most plants, the K⁺ concentrations in leaves increased under saline conditions (Table 3). The line R₅₆ had a higher K⁺ content than that of the other lines especially B₂₅(Table 4).At cellular level, K⁺/Na⁺ ratio in leaves of control plants was higher than that of saltstressed crop(Table 3). However, non-significant difference observed for K⁺/Na⁺ ratio. Therefore this ratio decreased in leaves in relation to salinity.

Ion effects have been considered to be related to salt tolerance (Cheeseman, 1988). In this study, salt tolerance was somehow correlated inversely with Na⁺ accumulation. The same results were reported in leaves of barley and olive (James et al., 2002). In contrast, in race and maize, salt tolerance of some individual does not correlated with leaf Na⁺ concentrations (James et al., 2002). The results also indicate that K^{+} was the main inorganic osmolyte of sunflower which accumulate in large amount under saline conditions. This result opposite to most plants, such as canola (bandeh-hagh et al., 2008), sugar beet (Ghoulam et al., 2005) and wheat (Yang et al., 2009). Usually Na⁺ concentrations are obviously higher than K^{+} concentrations in the plants under salt stress. Shahbaz et al. (2010) reports that in sunflower plants non-significant difference observed in K accumulation under 150 mM NaCl. Also, these results exactly parallel with Liu et al. (2010) for sunflower under 0, 50, 100 and 200 mM mixing two salts NaCl and Na₂SO4. The plants accumulated a large amount K^{+} instead of Na⁺, this not only reduced the water potential to achieve osmotic adjustment, but also reduced Na⁺ toxicity (Munns, 2002). This result reflects a specific adaptability of sunflower under long-term stress(Liu et al., 2010). In our study, the line R_2 that accumulate minimum $Na^{^{\star}}$ was also had minimum change in $K^{\scriptscriptstyle +}$ content under salinity conditions. It seems that high accumulation Na⁺ act as signal role for more assembling K^{\dagger} . A lower K^{\dagger}/Na^{\dagger} ratio is an index of toxicity because Na⁺ impairs the activity of K^{+} -requiring enzyme thus determining a low growth rate (Chaparzadeh et al., 2003). In this study, the K^{\dagger}/Na^{\dagger} ratio was decreased with increasing NaCl concentration. Regarding to enhance the Na⁺ and K^{+} content and reduction in K^{+}/Na^{+} ratio this is obvious that increasing in Na⁺ was higher than K⁺.

4.0 Conclusions:

The increase in Na⁺ content, in response to elevated NaCl salinity, significantly inhibited all the studied sunflower lines growth by reduction total dry weight and leaf area. The RGR of R₂, R₅₀ and R₅₆ were slightly reduced by salinity, whereas the RGR of salt- sensitive lines were significantly reduced. The reduction of RGR appeared to be due to a decrease in NAR. Na⁺ content increased with the increased salinity level and Opposite to most plants, the K^{+} concentrations in leaves increased under saline conditions. The lines that had minimum Na⁺ also accumulate lowest K⁺ in his leaves and vice versa in lines that had maximum Na^{\dagger} was had more K^{\dagger} content. Results for inorganic ions indicate especially Evolution in sunflower that maintenance K^{\dagger} upside under salinity stress. The amount of proline was increased in salt tolerant lines and it was very higher than GB and it showed that proline had major role and GB had less important role in sunflower under salt stress.

5.0 Acknowledgements:

The authors are grateful to Agricultural Research Center of Khoy for providing sunflower seed.

References:

- Abdul Jaleel, C., Gopi, R., Manivannan P. And Panneerselvam, R. (2007): Responses of antioxidant defense system of *Catharanthusroseus* (L.) G. Don. topaclobutrazol treatment under salinity. *Acta. Physiol. Plant*, 29: 205-209.
- Akita, S. and Cabuslay, G. S. (1990): Physiological basis of differential response to salinity in rice cultivars. *Plant soil*, 123: 277-294.
- Alvarez, I., Tomaro, M. L. and Benavides, M. P. (2003): Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. *Plant Cell Tissue Organ Culture*, 74: 51-59.
- Ashraf, M. (1994a): Organic substances responsible for salt tolerance in *Eruca sativa*. *Biol. Plant*, 36: 255-259.
- 5) Ashraf, M. (1994b): Breeding for salinity tolerance in plants. *Crit. Rev. Plant Sci.*, 13: 17-42.
- 6) Ashraf, M. (2002): Salt tolerance of cotton. Some new advances. *Crit. Rev. Plant Sci.*, 21: 1-30.
- Ashraf, M. (2004): Some important physiological selection criteria for salt tolerance in plants. *Flora*, 199: 361-376.
- Ashraf, M. (2009): Biotechnological approach of improving plant salt tolerance using antioxidants as markers. *Biotechnol. Adv.*, 27: 84-93.

359 Ahmad Heidari et al.

- 9) Ashraf, M. and Ali, Q. (2008): Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (*Brassica napusL.*). *Environmental and Experimental Botany*, 63: 266-273.
- Ashraf, M., Nazir, N. and McNeilly, T. (2001): Comparative salt tolerance of amphidiploid and diploid *Brassica* species. *Plant Sci.*, 160: 683-689.
- 11) Bandeh-hagh, A., Toorchi, M., Mohammadi, A., Chaparzadeh, N., Salekdeh, G. H. and Kazemnia, H. (2008): Growth and osmotic adjustment of canola genotypes in response to salinity. *Journal* of Food, Agriculture & Environment, 6(2): 201-208.
- 12) Bates, L. S., Waldren, R. P. and Teare, I. D. (1973): Rapid determination of free proline for waterstress studies. *Plant Soil*, 39: 205-207.
- 13) Bayuelo-Jime'nez, J. S., Craig, R. and Lynch, J. P. (2002): Salinity tolerance of Phaseolus species during germination and early seedling growth. *Crop Sci.*, 42: 1584-1594.
- 14) Bohnert, H. J. and jensen, R. G. (1996): Strategies for engineering water stress tolerance in plants. *Trends Biotechnol.*, 14: 89-97.
- 15) Bolarin, M. C., Santa-Cruz, A., Cayuela, E. and Perez-Alfocea, F. (1995): Short-term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity. *J. Plant Physiol.*, 147: 463-468.
- Chaparzadeh, N., Khavari-Nejad, R. A., Navari-Izzo, F. and Izzo, R. (2003): Water relations and ionic balance in *calendula officinalis* L. under salinity conditions. *Agrochimica*, XLVII: 69-79.
- 17) Cheeseman, J. M. (1988): Mechanisms of salinity tolerence in plants. *Plant Physiol.*, 87: 547-550.
- Chookhampaeng, S. (2011): The effect of salt stress on growth, chlorophyll content, proline content and antioxidative enzymes of pepper (*Capsicum annuum*L.) seedling. *European Journal* of Scientific Research, 49 (1): 103-109.
- 19) Cicek, N. and Cakirlar, H. (2002): The effect of salinity on some physiological parameters in two maize cultivars. *Bulgaria J. Plant Physiol.*,28(1-2): 66-74.
- 20) De Lacerda, C. F., Cambraia, J., Oliva, M. A. and Ruiz, H. A. (2005): Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. *Environ. Exp. Botany*, 54: 69-76.

- 21) El, S. and Saffan, S. (2008): Effect of salinity and osmotic stresses on some economic plants. *Res. J. of Agric. Biol. Sci.*, 4: 59-166.
- 22) El-Hendawy, S. E., Hu, Y. and Schmidhalter, U. (2005): Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. *Aust. J. Agric. Res.*, 56: 123-134.
- 23) Gadallah, M. A. A. (1999): Effects of proline and glycinebetaine on *Viciafabaresponses* to salt stress. *Biol. Plant*, 42: 249-257.
- 24) Genard, H., Le Saos, J., Hillard, J., Tremolieres, A. and Boucaud, J. (1991): Effect of salinity on lipid composition, glycinebetaine content and photosynthetic activity in chloroplasts of *Suaedamaritima*. *Plant Physiol. Biochem.*, 29: 421-427.
- 25) Ghoulam, C., Foursy, A.and Khalid, F. (2002): Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. *Environmental and Experimental Botany*, 47: 39-50.
- 26) Graifenberg, A., Giustiniani, L., Temperini, O. and Lipuccidi Paola, M. (1995): Allocation of Na, Cl, K and Cawithin plant tissues in globe artichoke (*CynarascolimusL.*) under saline-sodic conditions. *Sci. Horticult.*,63: 1-10.
- 27) Grieve, C. M. and Grattan, S. R. (1983): Rapid assay for determination of water soluble quaternary ammonium compounds. *Plant Soil*, 70: 303-307.
- 28) Grumet, R. and Hanson, A. D. (1986): Glycinebetaine accumulation in barley. *Aust. J. Plant Physiol.*, 13: 353-364.
- 29) Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. (2000): Plant cellular and molecular responses to high salinity. *Annu. Rev. Plant Physiol. Mol. Biol.*, 51: 463-499.
- 30) Iqbal, N. and Ashraf, M. Y. (2006): Does seed treatment with glycinebetaine improve germination rate and seedling growth of sunflower (*Helianthus annuusL.*) under osmotic stress. *Pak. J. Bot.*, 38(5): 1641-1648.
- 31) Iqbal, N., Ashraf, M. Y. and Ashraf, M. (2005): Influence of water stress and exogenous glycinebetaine on sunflower achene weight and oil percentage. *Int. J. Environ. Sci. Tech.*, 2(2): 155-160.
- 32) Jain, M., Mathur, G., Koul, S. and Sarin, N. B. (2001): Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of

groundnut (*Arachis hypogea* L.). *Plant Cell Rep.*, 20: 463-468.

- 33) James, R. A., Rivelli, A. R., Munns, R. and Caemmerer, S.V. (2002): Factors affecting CO₂ assimilation, leaf injury and growth in salt stressed durum wheat. *Funct. Plant Biol.*, 29: 1393-1403.
- 34) Jamil, M., Rehman, S. and Rha, E. S. (2007): Salinity effect on plant growth, psll photochemistry and chlorophyll content in sugar beet (*Beta vulgaris* L.) and cabbage (*Brassica* oleraceacapitata L.). Pak. J. Bot., 39 (3): 753-760.
- 35) Liu, J., Guo, W. Q. and SHI, D. C. (2010): Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. *Photosynthetica*, 48 (2): 278-286.
- 36) Lutts, S., Majerus, V. and Kinet, J. M. (1999):NaCleffectsonproline metabolism in rice (*oryza sativa*) seedling. *Physiol. Plant*, 105:450-458.
- 37) Maathuis, F. J. M. and Amtmann, A. (1999): K^{+} nutrition and Na⁺ toxicity: the basis of cellular K^{+}/Na^{+} ratios. *Ann. Bot.*, 84: 123-133.
- 38) Mansour, M. M. F. (1998): Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. *Plant Physiol. Biochem.*, 36: 767-772.
- Mansour, M. M. F. (2000): Nitrogen containing compounds and adaptation of plants to salinity stress. *Biol. Plant*, 43: 491-500.
- 40) Marschner, H. (1995): Mineral Nutrition of Higher Plants. Academic Press, London.
- 41) Mattioni, C., Lacernza, N. G., Troccoli, A., De Leonardis, A. M. and Fonzo, D. (1997): Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. *PhysiologiaPlantarum*, 101: 787-792.
- 42) Memon, S. A., Hou, X. and Wang, L. J. (2010): Morphological analysis of salt stress response of pak Choi. *EJEAFChe.*, 9 (1): 248–254.
- 43) Moftah, A. B. and Michel, B. B. (1987): The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. *Plant Physiol.*, 83: 283-286.
- 44) Munns, R. (2002): Comparative physiology of salt and water stress. *Plant Cell Environ.*, 25: 239-250, 2002.
- 45) Munns, R. (2005): Genes and salt tolerance: bringing them together. *New Phytol.*, 167(3): 645-663.
- 46) Munns, R., James, R. A. and Lauchli, A. (2006): Approaches to increasing the salt tolerance of

wheat and other cereals. J. Exp. Bot., 57: 1025-1043.

- 47) Murata, N., Mohanty, P. S., Hayashi, H. and Papageorgiou, G. C. (1992):Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. *FEBS Lett.*, 296: 187-189.
- Netto, A. T., Campostrini, E., Azevedo, L. C., Souza, M. A. D., Ramalho, J. C. and Chaves, M. M. (2009): Morphological analysis and photosynthetic performance of improved papaya genotypes. *Braz. J. Plant Physiol.*, 21 (3): 209-222.
- 49) Parida, A., Das, A. B. and Das, P. (2002):NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, *Bruguieraparviflora*, in hydroponic culture. *Plant Biol.*, 45: 28-36.
- 50) Perez-Alfocea, F., Balibrea, M. E., Santa Cruz, A. and Estana, M. A. (1996): Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. *Plant Soil*, 180: 251-257.
- 51) Qian, Y. L., Wilhelm, S. J. and Marcum, K. B. (2001): Comparative response of two Kentucky bluegrass cultivars to salinity stress. *Crop Sci.*, 41: 1895-1900.
- 52) Reynolds, M. P., Mujeeb-Kazi, A. and Sawkins, M. (2005): Prospects of utilizing plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environment. *Ann. Appl. Biol.*, 146: 239-259.
- 53) Rhodes, D. and Hanson, A. D. (1993): Quaternary ammonium and tertiary sulfonium compounds in higher plants. *Ann. Rev. Plant Physiol. Plant Mol. Biol.*, 44: 375- 384.
- 54) Rhodes, D., Rich, P. J., Brunk, D. G., Ju, G. C., Rhodes, J. C., Pauly, M. H. and Hansen, L. A. (1989): Development of two isogenic sweet corn hybrids differing for glycine betaine content. *Plant Physiol.*, 91: 1112-1121.
- 55) Robinson, S. P. and Jones, J. P. (1986): Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. *Aust. J. Plant Physiol.*, 13: 659-668.
- 56) Rui, L., Wei, S., Mu-xiang, C., Cheng-jun, J., Min, W. and Bo-ping, Y.(2009): Leaf anatomical changes of Burguieragymnorrhiza seedlings under salt stress. *J. Trop. Subtrop. Bot.*, 17(2): 169-175.
- 57) Sairam, R. K., Rao, K. V. and Srivastava, G. C. (2002): Differential response of wheat genotypes

361 Ahmad Heidari et al.

to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. *Plant Sci.*, 163: 1037-1046.

- 58) Sairam, R. K., Srivastava, G. C., Agarwal, S. and Meena, R.C. (2005): Differences in antioxidant activity in response to salinity stress in tolerant and susceptiblewheat genotypes. *Biol. Plant*, 49: 85-91.
- 59) Schwarz, M. and Gale, J. (1981): Maintenance respiration and carbon balance of plants at low levels of sodium chloride salinity. *J. Exp. Bot.*, 32: 933-941.
- 60) Serraj, D. and Sinclair, T. R. (2002):Osmolyte accumulation: can it really help increase crop yield under drought conditions? *Plant Cell Environ.*, 25: 333-341.
- 61) Shahbaz, M., Ashraf, M., Akram, N. A., Hanif, A., Hameed, S., Joham, S. and Rehman, R. (2010): Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (*Helianthus annuusL.*). *Acta. Physiol. Plant*, 10: 639-649.
- 62) Siddique, M. R. B., Hamid, A. and Islam, M. S. (2000): Drought stress effects on water relations of wheat. *Bot. Bull. Acad. Sin.*, 41: 35-39.
- 63) Silveira, J. A. G., Viegas, R.A., Rocha, I. M. A., Moreira, A. C. D. M., Moreira, R. A.and Oliveira, J. T. A. (2003):Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. *J. Plant Physiol.*, 160: 115-123.
- 64) Turan, M. A., Elkarim, A. H. A., Taban, A. and Taban, S. (2010): Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. *Afr. J. Agric. Res.*, 5(7): 584-588.
- 65) Turner, N. C. (1981): Techniques and experimental approaches for the measurement of plant water status. *Plant Soil*, 58: 339-366.
- 66) Wang, W., Vinocur, B. and Altman, A. (2003): Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. *Planta*, 218: 1-14.
- 67) Yang, C. W., Zhang, M. L., Liu, J., Shi, D. C.and Wang, D. L. (2009): Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (*Chlorisvirgata*). *Photosynthetica*, 47: 55-60.
- 68) Yang, G., Rhodes, G. and Joly, R. G. (1996): Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-

deficiency and glycinebetaine-containing maize lines. *Aust. J. Plant Physiol.*, 23: 437-443.

- 69) Yilmaz, H. and Kina, A. (2008): The influence of NaCl salinity on some vegetative and chemical changes of strawberries (*Fragariaananassa* L.). *Afr. J. Biotechnol.*, 7(18): 3299-3305.
- 70) Zhao, G. Q., Ma, B. L. and Ren, C. Z. (2007): Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. *Crop Sci.*, 47(1): 123-131.
- 71) Zhu, J. K. (2003): Regulation of ion homeostasis under salt stress. *Curr. Opin. Plant Biol.*, 6: 441-445.